
GARCIA-POMAR ET AL. VOL. 7 ’ NO. 6 ’ 4988–4994 ’ 2013

www.acsnano.org

4988

May 15, 2013

C 2013 American Chemical Society

Scattering of Graphene Plasmons by
Defects in the Graphene Sheet
Juan Luis Garcia-Pomar, Alexey Yu. Nikitin,† and Luis Martin-Moreno*

Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC Universidad de Zaragoza, E-50009, Zaragoza, Spain.
†Present address: IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; CIC nanoGUNE Consolider, 20018 Donostia-San Sebastián, Spain.

I
n the past few years, it has become
evident that graphene not only displays
remarkable electronic properties but

also plays a significant role in photonics.1,2

One aspect that has recently attractedmuch
interest is that doped graphene supports
bound electromagnetic modes, known as
graphene plasmons or graphene surface
plasmons (GSPs),3 which have the appeal-

ing characteristics of being both confined in

a length scale much smaller than the free

space wavelength4�7 and potentially con-

trollable using external gates. Very recently,

the existence of highly confined GSPs has

received experimental confirmation.8�10

Several aspects of GSPs have already been

studied theoretically, such as the efficient

and directional coupling with nanoemitters

(and the associated enhanced spontaneous

emission rate),11�15 enhanced absorption

and resonance diffraction,16�21 metamaterial

and antenna applications,22�24 and their

wave guiding capabilities in ribbons25�30

and edges.28,31

However, very little is known about how
GSPs behave when they encounter defects
in the graphene sheet they propagate in.
These defects can occur both (i) naturally as,

for instance, kinks appearing due to fabrica-
tion process,32 domain borders in graphene
growth by CVD,33 the presence ofmultilayer
islands,32 cracks,34,35 and different domains
in CVD graphene;33 or (ii) created externally,
for example, as the changes of conductivity
in gate-induced p-n36 or p-n-p junctions.37,38

In this article, we present a theoretical
study of GSP scattering by one-dimensional
conductivity inhomogeneities. Calculations
are conducted with an original method
based on the Rayleigh expansion, which
has the advantage of providing analytical
expressions in some limiting cases.

MODEL

We consider a free-standing graphene
monolayer, placed at z = 0, with a spatial

inhomogeneity in the two-dimensional

conductivity σ. Actually, the presence of a
substrate may be indispensable for applica-

tions, but it does not change any of the

fundamental scattering properties of GSPs
(affecting mainly the mobility of the charge

carriers), which is why in this paper we

concentrate on the simplest structure. We
will analyze one-dimensional (1D) inhomo-

geneities, with translational symmetry in the
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ABSTRACT A theoretical study is presented on the scattering of graphene surface plasmons (GSPs) by defects in

the graphene sheet they propagate in. These defects can be either natural (as domain boundaries, ripples, and cracks,

among others) or induced by an external gate. The scattering is shown to be governed by an integral equation, derived

from a plane wave expansion of the fields, which in general must be solved numerically, but it provides useful

analytical results for small defects. Two main cases are considered: smooth variations of the graphene conductivity

(characterized by a Gaussian conductivity profile) and sharp variations (represented by islands with different

conductivity). In general, reflection largely dominates over radiation out of the graphene sheet. However, in the case of

sharply defined conductivity islands, there are some values of island size and frequency where the reflectance vanishes

and, correspondingly, the radiation out-of-plane is the main scattering process. For smooth defects, the reflectance

spectra present a single maximum at the condition kpa≈
√
2, where kp is the GSP wavevector and a is the spatial width of the defect. In contrast, the reflectance

spectra of sharp defects present periodic oscillationswith period kp
0
a, where kp

0
is the GSPwavelength inside the defect. Finally, the case of cracks (gaps in the graphene

conductivity) is considered, showing that the reflectance is practically unity for gap widths larger than one-tenth of the GSP wavelength.
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in-plane direction perpendicular to GSP incidence (the
y-direction), so σ = σ(x). The geometry of the system is
schematically shown in Figure 1.
Away from the defect, the (frequency-dependent)

conductivity of graphene is σG. Defects have a char-
acteristic width a and a conductivity σm at the defect
center (x = 0), which can, alternatively, be described by
the relative change in conductivity δ = (σm � σG)/σG.
In the scattering geometry, a monochromatic GSP

(time dependency e�iωt), propagating along the Ox
axis (from the region x < 0), impinges the defect, which
induces some reflection back into the SPP channel as
well as some radiation out of the graphene sheet.
Notice that, due to the symmetry of the problem, all
scattered waves have the same polarization as the GSP
(transverse magnetic). The scattering amplitudes can
be computed by using numerical solvers of Maxwell
equations. Here, we present an alternative method,
basedon the Rayleighplanewave expansion (RPWE),39,40

which in general must also be solved numerically but
presents theadvantageofprovidinganalytical expressions
for the scattering coefficients in some limiting cases. We
leave all derivations for the Supporting Information and
presenthere themainequations.Within theRPWEmethod,
the electromagnetic field is written (all other components
can be readily obtained from Maxwell equations) as

Ex (x, z ¼ 0) ¼ eiqpgx þ
Z ¥

�¥

G(q)B(q)eiqgxdq (1)

where q and qp are x-components of the wavevectors of a
plane wave and GSP, respectively, normalized to the
wavevector in vacuum g = 2π/λ. B(q) is the scattering
amplitudes, which satisfy the integral equation:

B(q) ¼ �ΔR(q � qp) �
Z ¥

�¥

ΔR(q � q0)G(q0)B(q0)dq0 (2)

HereΔR(q) is the scattering potential related to the Fourier
transform of the inhomogeneity of the dimensionless con-
ductivityΔR(x) = (2π/c)(σ(x)� σG) andG(q) =qz/(1þ qzRG),
where c is the speed of light and qz = (1� q2)1/2.

The GSP reflectance and transmittance (R and T,
respectively), as well as the fraction of energy flux
scattered out-of-plane S, can be obtained from the
amplitudes B(q) (see Supporting Information). For
instance, R = |2πB(�qp)/(qpRG

3)|2.
It must be pointed out that this model does account

for losses in the graphene sheet. However, in most
cases considered in this paper, the defect size a ismuch
smaller than the GSP absorption length Lp, so the
inclusion of losses leaves the scattering coefficients
virtually unaltered. The validation of this procedure
for small defects through the comparison with calcula-
tions performed considering absorption (running simula-
tions with both the RPWE method and a commercial
finite-elements code41) is presented in the Supporting
Information. Therewe also show that, even for the largest
defects considered, the model without losses provides a
good starting point for understanding basic properties of
GSP scattering. Therefore, and in order to concentrate on
the scattering coefficients intrinsically due to the defect,
all calculations presented here have been obtained set-
ting Re[σG] = 0. In this way, current conservation implies
R þ T þ S = 1.
Throughout the paper, the conductivity is taken

from the RPA expression42�44 and, for definiteness,
we consider that the chemical potential is μ = 0.2 eV.
As we will show, this choice is not essential, as most
results only depend on μ through the value of the GSP
wavevector.
Of course, the scattering coefficients associated with

any particular defect will depend on its conductivity
profile. Here, we do not attempt to compute this
profile; instead, we will assume some basic spatial
dependences for the conductivity and compute how
they scatter GSPs. We analyze two differentiated main
cases: (i) smooth variations in the conductivity, described
by a Gaussian profile σ(x) = σG{1 þ δ exp(�4x2/a2)},
wherea is the full spatialwidth at 1/e relative conductivity
change; and (ii) abrupt ones, representedby a stepdefect
σ(x) = σG{1þ δΘ(a/2� |x|)}, whereΘ(x) is the Heaviside
step function.

Figure 1. (a) Schematic geometry of free-standing graphene with a defect zone (blue) that interacts with a GSP. The figure
shows the conductivity profile (bottom) and a representative case of the computed total (incidentþ scattered)magnetic field
modulus |H| (top). (b) Diagram for the different types of conductivity defects analyzed. (c) Schematics of the scattering
processes occurring when a conductivity defect is present in a graphene sheet.
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RESULTS AND DISCUSSION

Smooth Defects. Let us advance that, for all smooth
defects considered, our calculations show that the scat-
teringout-of-plane is extremely small (S/Rj10�4�10�2).
This pointwill be discussed later; now it allows us to focus
on the reflectance, from where the transmittance can be
obtained as T ≈ 1 � R.

We first consider a Gaussian profile variation in the
conductivity with a small δ. This profile provides a good
approximation to the realistic variations on graphene
conductivity arising from atomic steps in the substrate
when graphene is grown on SiC.32 In this case, the
characteristic width of the Gaussian profile is a ∼ 20�
50 nm, and the conductivity relative change δ ranges
between �0.01 and �0.5.

Figure 2 renders the reflectance spectra R for defects
withdifferentwidthsand twovaluesof the relativechange
in conductivity. We observe that R has a maximum for
each value of δ and a. This maximum arises as a compro-
mise between two distinct asymptotic dependencies. For
small GSP wavelengths, λp, the GSP follows adiabatically
the variation of the conductivity and virtually no reflection
is generated. Conversely, in the long wavelength region,
thedefectwidth is very small in relative terms (a,λp) and
so is the reflectance, which decreases with λ due to the
decrease in a/λp. Between these asymptotic decays, there
is maximum for R, related to the q-space Fourier image of
the Gaussian conductivity profile.

In order to gain more insight into the behavior of
the GSP reflectance and to obtain some quantitative
estimations to support the exact calculation,we compute
the plane wave amplitudes B(q) within the first-order
Born approximation (FOBA). This approximation is valid
for small variations of δ and corresponds to neglecting
the integral term in the right-hand side of eq 2, keeping
only the linear term in ΔR.

Within FOBA, the scattering amplitude reads BFOBA-
(q) = �ΔR(q � qp). Using RG

�2 = 1 � qp
2 ≈ �qp

2, we
obtain (see details in Supporting Information)

RFOBA ¼ π

4
(kpa)

2e�1=2(kpa)2δ2 (3)

Notice that, within the FOBA, the quantity R/δ2 is a
universal function of a/λp. It also predicts that the max-
imum in reflectance occurs when a/λp = 1/(

√
2π) ≈ 0.22

(independent of δ), with a maximum reflectance Rmax
FOBA =

(π/2e)δ2 ≈ 0.58δ2. The validity of the scaling of the
reflectance with a/λp predicted by the FOBA is shown
in the inset to Figure 2 for different defect widths and
δ = �0.2. Additionally, Figure 3 renders the scaling
with δ computed for a narrow defect, together with
the prediction by the FOBA. The FOBA captures very
accurately the spectral position of the maximum
reflectance, even formoderate variations in conductivity,
and gives a good approximation to the full reflectance
spectra. The FOBA also provides insight into the rela-
tive strength of reflectance and radiation channels. The
scattering strength depends both on (i) the density of
final states (which is much larger for GSPs than for
radiation channels) and (ii) a matrix element, given by
the Fourier component of the conductivity variation
evaluated at the wavevector difference Δk between
the GSP one and that of the final state (i.e., Δk = �2kp
for reflectance and Δk ≈ �kp for radiation processes).
In the case of smooth defects, the FOBA shows that the
density of states factor dominates over the “matrix
element” one (see Supporting Information). Actually, at
the reflectance maximum, the FOBA predicts S/R =
0.5e3/4|RG|

2, which is in the range of∼10�4 to 10�2 for
the values of RG relevant for GSP propagation (RG ∼
1�5R0, whereR0≈ 1/137 is the fine structure constant).
This preponderance of R over S holds even for larger

Figure 2. Reflectance spectra R(λ) for a GSP impinging a shallowGaussian conductivity defect, for different defect widths and
two values of the relative change in conductivity at the defect center, δ. Inset: R as a function of a/λp for δ =�0.2 and different
widths, showing that the reflectance scales with a/λp. The results obtained with the finite-element method (open circles) for
a = 30 nm and δ = �0.2 are also shown, in order to confirm the validity of the RPWE calculations.
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defects strengths, where the FOBA is no longer strictly
applicable.

It is also interesting to analyze the scattering by
smooth defects with large δ, as they can be produced

by changing the carrier concentration in graphene (and
thus the conductivity) with an external gate.37,38 The
Gaussian shape in this case may simulate a n� � n�n�

(or pþ � p � pþ) junction. In this case, the defect width
will depend on the geometrical details of the gate but
can be expected to be on the order of 0.2�1 μm, and
δ can be considered a tunable parameter ranging
from �1 to 0.

Figure 4 presents the reflectance spectra for different
values of δ, for the fixed defect width a = 400 nm. These
results show that, for large relative changes of the
conductivity, the maximum reflectance occurs for even
smaller defect widths than those predicted by the FOBA
and that, for large |δ|, there are spectral regionswhere the
reflectivity is high. This point is even more apparent in
Figure 5a, which renders the reflectance spectra for δ =
�0.9 and different defect widths. Interestingly, the re-
flectance still satisfies approximately the scaling relation
in a/λp predicted by the FOBA (see Figure 5b),
although for this large value of |δ| the FOBA is no longer
a good approximation to the scattering amplitudes,
which must be obtained by solving the full integral
of eq 2.

It is remarkable that, for the large relative change in
conductivity considered in Figure 5, the reflectance in the
spectral region a/λp > 0.2 is small. Actually, there are
values ofa/λpwhere the reflectance vanishes and, given
the scattering out-of-plane is negligible, the transmit-
tance is almost unity. As the GSP extension in the
direction perpendicular to the graphene sheet scales
with the conductivity, the GSP is very strongly bound at
the defect center. Then, unit transmittance and con-
servation of energy imply that the electric field is
strongly enhanced at the center, as illustrated in Figure 6a.
The scaling of the electric field amplitude can be
obtained by assuming that, for adiabatic propagation of
GSPs, the electrical current along the graphene sheet is
constant, that is, |J(x)| = |σ(x)| 3 |Ex(x)| = constant, leading to
|Ex(x)| � 1/|σ(x)|. As for the other EM components of the

Figure 4. Reflectance spectra for a GSP impinging a Gauss-
ian conductivity defect for different values of δ, showing the
spectral shift of maximum reflectance with relative change
of conductivity at the defect center. The defect width is
a = 400 nm.

Figure 3. R/δ2 as function of a/λp, for a Gaussian conduc-
tivity defect with a = 50 nm and different values of the
relative change in conductivity at the defect center δ. For
small δ, the curves converge to the universal reflectance
spectra predicted by the FOBA, which is still a good approx-
imation for moderate values of δ.

Figure 5. (a) Reflectance spectra for aGSP impingingaGaussian conductivity defect, for differentwidths and for bothδ=�0.9
and δ =�0.4 . (b) R/δ2 in function of a/λp for the same parameters considered in (a), showing the approximate scaling of the
reflectance spectra. The open circles render calculations performedwithin the FEM (in order to validate those performedwith
the RPWE method), for a = 400 nm and δ = �0.9.
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GSP field, we know that they satisfy |Ex|= |Ez|= |qpH|. So,
taking into account that locally qp(x) = i/R(x), we arrive at
|H(x)|= |R(x)Ex(x)| � constant. The spatial dependence of
the GSP field is rendered in Figure 6b, together with the
conductivity profile, fully confirming the predicted scaling
behavior.

Abrupt Defects. One paradigmatic case of defect with
abrupt change in conductivity is an island of multilayer
graphene, placed on a graphene monolayer. As for the
small number of layers, the thickness of the multilayer is
much smaller than theGSP extension along the normal to
the sheet; this thickness can be neglected, and the multi-
layer region can be approximated by a conductivity
defect. Here we analyze the scattering by both bi- and
trilayer stripsandapproximate their conductivities as twice

(δ = 1) or three times (δ = 2) the conductivity of a
monolayer, respectively. The FOBA calculation for these
rectangular-type defects gives RFOBA = sin2(kpa)δ

2, pre-
dicting that the reflectance spectra oscillates periodically
when expressed as a function of a/λp. Within the FOBA,
reflectanceminimaoccur ata=nλp/2,n=1,2,... (which can
be interpreted as the constructive interference in the
backward direction between GSP partially reflected at
the edges of the defect). The FOBA is not a good
approximation for these defects where δ is not small, as
it fails to take into account themodification in theGSP field
inside the island due to the change in conductivity.
However, we have found that the full calculations follow
quite approximately the periodic behavior predicted
by the FOBA, but as a function of a/λp

0
, where λp

0
is the

Figure 6. (a) Snapshot of the electric field norm along the GSP interacting with a Gaussian conductivity defect characterized
by δ =�0.9, defect width a = 200 nm and λ = 10 μm. (b) Crosscut at z = 0 of the previous snapshot. Open squares represent the
normalizedmagnetic field norm H/H0 (open squares), which is approximately unity along the GSP propagation, and open blue
circles render the normalized electric field norm E/E0, showing the exact scaling with the inverse of normalized dimensionless
conductivity (R/RG)

�1 (continuous black line).

Figure 7. (a) Reflectance R, transmittance T, and fraction of energy radiated out-of-plane S for a GSP (free space wavelength
λ = 10 μm) impinging onto a strip of either bilayer (left) or trilayer (right) graphene. The scattering coefficients are presented
as a function of strip size a (in units of the GSP wavelength in the island λp

0
, which for the considered case is 0.43 μm for the

bilayer and 0.64 μm for the trilayer). (b) Snapshots of themagnetic field norm for a GSP propagating in a graphenemonolayer
and impinging onto either a bilayer (left) or a trilayer (right) strip of width a = 1 μm.
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wavelength of the plasmon corresponding to the con-
ductivity inside the defect (see Figure 7a). Notice also that,
for these abrupt defects, the scattering out-of-plane also
presents an oscillatory behavior. Its amplitude, although
smaller than the one for the reflectance, is not negligible
and is peaked (as also does the transmittance) at the
spectral positions where the reflectance is minimum.

As illustrated in Figure 7b, the strong reflection of GSP
at the island boundaries results is the formation of
standing waves in the island, with a number of nodes
determined by both the island size and the GSP wave-
length there. Notice that, as the conductivity inside the
multilayer island is larger than in the monolayer, the GSP
is less strongly bound to the graphene sheet. Also,
Figure 7b clearly shows that the out-of-plane radiation
is generated at the island boundaries. As a caveat, notice
that Figure 7 considers a range of strip widths for which
absorption of GSP may not be negligible. Nevertheless,
full calculations assuming realistic values for the scatter-
ing time show that the lossless calculations provide the
main features in the size dependence, being accurate for
small a/λp

0
and semiquantitative for the largest strip

widths considered (see Supporting Information).
Finally, as another paradigmatic case of abrupt

defect, we study the scattering of a GSP by a crack in
the graphene layer. The exact spatial dependence of
the conductivity near the graphene edge is a question
still under debate. However, the microscopic details of
the graphene edge (whether has a zigzag or armchair
configuration) play a role only for structures with
sizes smaller than 10�20 nm.45,46 Here we will simply
assume that the conductivity vanishes within the
gap region, in order to provide an estimation of the
distances that GSP can tunnel through (calculations

performed with an arbitrarily enhanced absorption in
the 20 nm strips closer to the gap show that the
reflectance spectra remains virtually unaltered; see
Supporting Information). Figure 8 renders the depen-
dence of the computed reflectance with gap width for
several frequencies. The results are presented as func-
tion of a/λp, showing that the reflectance approxi-
mately follows a scaling behavior. Still, the reflectivity
is high already for small values of a/λp, demonstrating
the extreme sensitivity of GSPs to the presence of
cracks in the graphene sheet. The insets to Figure 8 show
snapshots of the magnetic field, illustrating (i) the stand-
ing wave arising from the reflection of the GSP at the
crack, (ii) the smallness of the radiation out of the
graphene sheet (in all calculations, the fraction of GSP
energy radiated out-of-plane is S ≈ 10�3), and (iii) that,
remarkably, a GSP is already substantially reflected for
gaps as small as 0.01λp and fully reflected for a > 0.1λp.

CONCLUSION

We have analyzed the scattering properties of GSP
by defects in the local conductivity of the graphene
sheet. In the case of smooth spatial variations of the
defect conductivity (which occur, for instance, when
the defect is created by modification of the carrier
concentration via a top gate), we have found that, for a
given relative change in the conductivity at the defect
center, the reflectance follows approximately a uni-
versal scaling in terms of a/λp. In all cases, the reflec-
tance reaches its spectral maximum value when a ≈
0.2λp. When a/λp is larger than that given from the
previous condition, the GSP propagation can be consid-
ered as adiabatic, and thus the GSP ismainly transmitted.
When, additionally, the conductivity at the center of the
defect is small, this leads to a strong electric field
enhancement at the defect center. We have also found
that, for these smooth defects, the scattering out-of-
plane is always much smaller than the reflectance.
A different behavior is found for the scattering of

GSP by multilayer islands, placed in a monolayer back-
ground. In this case, the scattering out-of-plane is not
negligible, although on average it is smaller than the
reflectance. In fact, the reflectance spectra oscillate
periodically as a function of quotient between the
island width and the plasmon wavelength inside the

defect, with both transmittance and scattering out-of-
plane presenting maxima at the reflectance minima.
Finally, we have found that conductivity gaps in

the graphene sheet prevent very efficiently the GSP
propagation, with the GSP being fully reflected for gap
widths larger than ∼0.1λp.

METHODS
Equation 2 has been solved discretizing q and replacing the

infinite region of integration by increasingly larger finite limits,
until convergency is achieved. A nonuniform discretization

scheme in q-space is considered, in order to take into account
the strong variations of the Green's function G(q).39,40

Conflict of Interest: The authors declare no competing
financial interest.

Figure 8. Reflectance R for a GSP impinging onto a crack, as
a function of crack width a, for different frequencies. FEM
calculation for 6 THz is shown to demonstrate the validity of
the RPWE method. Inset: snapshots of the magnetic field
norm, normalized to that of the incident magnetic field at
the graphene sheet, for the cases a/λp = 0.02 and a/λp = 0.11.
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